
Bugflow Auto Gnome Documentation
Release 0.0.0

Team Bugflow

Sep 27, 2018





Contents:

1 Introduction 1

2 Using a Gnome 3
2.1 The .gnome.yml file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Web Hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Available Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Operating Gnomes 5

4 Hacking the gnome itself 7
4.1 Codebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Plugin Development 13
5.1 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 SortingHat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 VerboseCallbackLogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Python Module Index 15

i



ii



CHAPTER 1

Introduction

Bugflow is a perspective on software development that focusses on the speed and efficiency with which bugs are
created (as well as features, enhancements, and other more subjective descriptions of software changes)

The Bugflow auto-gnome is a mechanism for reducing the bugflow resistance by automating tedious tasks, freeing
up developers to focus on creating new bugs.

It is inspired by the concept of a WikiGnome. The source code is available, in all it’s buggy glory at https:
//github.com/bugflow/auto-gnome/

1

https://github.com/bugflow/auto-gnome/
https://github.com/bugflow/auto-gnome/


Bugflow Auto Gnome Documentation, Release 0.0.0

2 Chapter 1. Introduction



CHAPTER 2

Using a Gnome

You do not need to install or run this code to use it.

All you need to do is:

• create a .gnome.yml file in the root of your GitHub repository

• configure the “policies” you want the gnome to follow

• register the github web hook to the bugflow callback endpoint

• give the gnome appropriate permissions to allow it to implement your policies

2.1 The .gnome.yml file

The base directory of your hithub repo needs to have a file called .gnome.yml

TODO: insert screen shor of the bugflow repo, highlighting it’s .gnome.yml

This needs to be a valid yaml file (TODO: link to the yaml web site)

The yaml file needs to contain a list of policies. The policies that are available in this repository are the ones we
find useful, you can develop your own if you want to.

To ensure the GitHub Ticket Gnomes do the things you want them to do, the first thing you have to do is tell them
what those things are.

Here is an example of a very simple .gnome.yml file:

policies:
- VerboseCallbackLogging
- NonExistantPolicy
- SortingHat

This tells the gnome to do three things:

• Apply the VerboseCallbackLogging policy. This is a fairly silly thing for most users to do, because they
can’t see the logs that are produced. It may sometimes be usefull for DevOps crews working on the gnome
itself. Basically, you are asking the gnome to mutter furiously to itself.

• Apply the NonExistantPolicy. There is no such policy, so this will cause another kind of silent muttering
(of no use to most users, and possible use to DevOps crews working on the gnome itself).

3



Bugflow Auto Gnome Documentation, Release 0.0.0

• Apply the SortingHat policy. This is an example of something you might actually want to do. SortingHat
policy is an example of a simple GitHub workflow automation.

Over time we might add more policies, including policies that you want to use. Or you can develop your own.
Either way, the .gnome.yml file is how you tell your gnome what you want it to do in response to events in this
repository.

2.2 The Web Hook

TODO:

• write some words about wiring-up the GitHub web hook.

• include a screenshot

• resolve if we want to make an app integration or not?

• resolve what to do about secrets / HMAC callback verification (etc)

At the moment, the gnome needs the user to manually configure a web hook in GitHub.

There may be bettwe ways to do this.

2.3 Available Policies

TODO: cog out the module docstring for each policy, with auto-generated headers

4 Chapter 2. Using a Gnome



CHAPTER 3

Operating Gnomes

These are not garden variety gnomes, they live in the computers.

For now, got to Miserlou’s Zappa web site and see all about zappa. That’s how we are doing it now, but there’s
not much zappa-specific stuff (it’s a simple web api, that mashes up other apis, written in python and making use
of flask)

copy zappa_settings.json.example -> zappa_settings.json

Edit it to your liking. Make sure you have an AWS account set up (you can use the cli, right?)

5



Bugflow Auto Gnome Documentation, Release 0.0.0

6 Chapter 3. Operating Gnomes



7



Bugflow Auto Gnome Documentation, Release 0.0.0

CHAPTER 4

Hacking the gnome itself

codebase

app.py
(process callbacks)

util.py
(abstraction) callback

policies/__init__.py
(register plugins)

GitHub
API v3

plugins/*
(do interesting things)

anything

GitHub

humans

8 Chapter 4. Hacking the gnome itself



Bugflow Auto Gnome Documentation, Release 0.0.0

4.1 Codebase

The callback service is provided by a Flask app, and the code for this is in gnome/app.py. It’s only job is to receive
callbacks from GitHub and process them.

app.py delegates the interesting stuff to code in gnome/utils.py. This does two things, interacts with
GitHub to obtain configuration, then delegates configured tasks to the plugins (via the plugin register,
gnome/policies/__init__.py)

Ultimately, interesting stuff is delegated to plugins. All plugins must provide a dispatch_gnome() method. If
configured, this is called with data from the originating callback event (and config).

4.1.1 app.py

Flask API that processes callback messages from GitHub (or localhost). Messages are validated, then dispatched
to all configured policies.

gnome.app.index()

4.1.2 gnome/utils.py

class util.CallbackEvent(request)
CallbackEvent is an abstraction over the raw flask request object. It provides convenience methods for
validation and payload access.

headers()

is_valid()

payload()

class util.Config(callback)
Config is generated from the .gnome.yml file that is found in the root of a repository that is a source of
GitHub callback events.

The .gnome.yml file is retrieved, parsed and validated. Then, the get_activities() method can be used to
instantiate policy objects for everything that was configured in the repo.

get_activities()
This is the magic method. It processes the config (from .gnome.yml) and instantiates the policies,
which are presumably dispatched.

get_yaml()

yaml_is_valid()

exception util.InvalidPayloadJSONError

4.1.3 gnome/gh.py

class gh.EventSourceValidator
GitHub publishes the address ranges that they make callbacks from.

Instances of this class can be used to validate ip addresses, like a kind of dymanic whitelist.

get_hook_blocks()
Fetch the whitelisted addresses blocks published by GitHub (directly, or from cache).

ip_str_is_valid(ip_str)
This function returns true if the IP address (string) passed to it is within the address blocks published
by GitHub.

4.1. Codebase 9



Bugflow Auto Gnome Documentation, Release 0.0.0

class gh.Issue(repo, gh_issue)
Wrapper of pygithub.Issue.Issue, with cache and convenience methods.

has_milestone()

move_to_milestone(new_milestone)

class gh.Milestone(repo, milestone)
Wrapper of pygithub.Milestone.Milestone with cache and convenience methods. Bound to a Repo instance
for access to the Github connection (credentials etc).

description

due_on

number

open_tickets()

title

update(**kwargs)

class gh.Repo(repo_name)
This class is an abstraction over the GitHub repository.

It interacts with GitHub as the configured user. Note this is a double-stacked abstraction (it’s a wrapper
around the PyGithub library, which wraps the GitHub API v3). That makes the code seem a little strange
on first reading, however it simplifies mocking in tests at the business logic layer.

create_milestone(milestone_name, state=’open’, description=None, due_on=None)
If the milestone does not exist, create it.

If (optional) date passed in, set that date on the milestone. Dito for description. Otherwise, both empty.

Returns the created (or pre-existing) Milestone instance.

ensure_milestone_exists(milestone_name, description=None, date=None)
If the repo does not have a milestone with the given name then create one.

If description or date parameters are provided, and the milestone is created, then they will be used.

If the milestone already exists, and the date or description differ from the ones provided, they will be
ignored. This is NOT follow the “upsert” pattern.

ensure_milestone_has_due_date(milestone_name, due_date)
If the milestone does not have a due date, or if it has a due date that differs from the one provided, then
update the due date to the one provided.

get_config()

get_milestone(milestone_name, cache=True)
Returns the milestone with by name (or None)

milestone_exists(milestone_name)
Returns True if the milestone exists.

milestones

update_milestones()

upsert_milestone(title, **kwargs)

gh.repo_from_callback(callback)

4.1.4 gnome/policies/__init__.py

The util module instantiates the policy module. This is a very simple thing, all it does is import the relevant classes
(from modules in the plugins directory).

10 Chapter 4. Hacking the gnome itself



Bugflow Auto Gnome Documentation, Release 0.0.0

When you make a new plugin, it won’t do anything until you register it by importing the relevant class into
policies/__int__.py

Browse from there the plugins (see next section, Hacking Policies). . .

4.2 Tests

4.2. Tests 11



Bugflow Auto Gnome Documentation, Release 0.0.0

12 Chapter 4. Hacking the gnome itself



CHAPTER 5

Plugin Development

Assuming everything is working, you probably want to hack on “policies”. They are the things that do the stuff
you want done. They are kind of like plugins. Users specify the policy they want to operate in their repo (using
.gnome.yml), and you write the policy in python code that does what they want. Whenever the service get’s a
callback from GitHub, it “dispatches” all the configured policies. Simple.

5.1 Policy

class policies.Policy(config, callback)
Abstract base-class. Inherited by policies that actually do stuff.

Don’t put this in your .gnome.yml, it’s ignored.

dispatch_gnome()
The method that does the stuff you want done.

This method must be over-ridden in actual policies.

5.2 SortingHat

class policies.SortingHat(config, callback)
The “Sorting Hat” is a milestone with no due-date, that signifies some sort of ticket grooming/prioritisation
process is necessary.

The sorting hat is like an in-tray for the person/people responsible for assessing and prioritising tickets.

As a software developer
I want my auto-gnome to use a sorting hat policy
So that my tickets are continuously groomed and prioritised

dispatch_gnome()
The method that does the stuff you want done.

This method must be over-ridden in actual policies.

13



Bugflow Auto Gnome Documentation, Release 0.0.0

5.3 VerboseCallbackLogging

class policies.VerboseCallbackLogging(config, callback)
This policy is very simple, it is primarially used for debugging the ticket gnome itself.

As a Gnome user, enabling this policy will achieve nothing because you don’t have access to the logs it
creates.

As a Gnome operator, you may find it useful for debugging but probably not.

As a Gnome developer, it serves as a canonical example of how to create a policy to be enacted by the
Gnome. That is why there is so much more documentation than code.

dispatch_gnome()
You can consider the “dispatch_gnome” method like “main” method for gnomes. It is the only method
every subclass of Policy requires, and is the method invoked in response to callback event from GitHub
(if the repo is configured with this policy active).

14 Chapter 5. Plugin Development



Python Module Index

g
gh, 9
gnome.app, 9

u
util, 9

15



Bugflow Auto Gnome Documentation, Release 0.0.0

16 Python Module Index



Index

C
CallbackEvent (class in util), 9
Config (class in util), 9
create_milestone() (gh.Repo method), 10

D
description (gh.Milestone attribute), 10
dispatch_gnome() (policies.Policy method), 13
dispatch_gnome() (policies.SortingHat method), 13
dispatch_gnome() (policies.VerboseCallbackLogging

method), 14
due_on (gh.Milestone attribute), 10

E
ensure_milestone_exists() (gh.Repo method), 10
ensure_milestone_has_due_date() (gh.Repo method),

10
EventSourceValidator (class in gh), 9

G
get_activities() (util.Config method), 9
get_config() (gh.Repo method), 10
get_hook_blocks() (gh.EventSourceValidator method),

9
get_milestone() (gh.Repo method), 10
get_yaml() (util.Config method), 9
gh (module), 9
gnome.app (module), 9

H
has_milestone() (gh.Issue method), 10
headers() (util.CallbackEvent method), 9

I
index() (in module gnome.app), 9
InvalidPayloadJSONError, 9
ip_str_is_valid() (gh.EventSourceValidator method), 9
is_valid() (util.CallbackEvent method), 9
Issue (class in gh), 9

M
Milestone (class in gh), 10
milestone_exists() (gh.Repo method), 10

milestones (gh.Repo attribute), 10
move_to_milestone() (gh.Issue method), 10

N
number (gh.Milestone attribute), 10

O
open_tickets() (gh.Milestone method), 10

P
payload() (util.CallbackEvent method), 9
Policy (class in policies), 13

R
Repo (class in gh), 10
repo_from_callback() (in module gh), 10

S
SortingHat (class in policies), 13

T
title (gh.Milestone attribute), 10

U
update() (gh.Milestone method), 10
update_milestones() (gh.Repo method), 10
upsert_milestone() (gh.Repo method), 10
util (module), 9

V
VerboseCallbackLogging (class in policies), 14

Y
yaml_is_valid() (util.Config method), 9

17


	Introduction
	Using a Gnome
	The .gnome.yml file
	The Web Hook
	Available Policies

	Operating Gnomes
	Hacking the gnome itself
	Codebase
	Tests

	Plugin Development
	Policy
	SortingHat
	VerboseCallbackLogging

	Python Module Index

